Privacy-Preserving Federated Singular Value Decomposition
نویسندگان
چکیده
Singular value decomposition (SVD) is a fundamental technique widely used in various applications, such as recommendation systems and principal component analyses. In recent years, the need for privacy-preserving computations has been increasing constantly, which concerns SVD well. Federated emerged promising approach that enables collaborative computation without sharing raw data. However, existing federated approaches still improvements regarding privacy guarantees utility preservation. This paper moves step further towards these directions: we propose two enhanced schemes focusing on privacy, respectively. Using system use-case with real-world data, demonstrate our outperform state-of-the-art solution. Our utility-enhanced scheme (utilizing secure aggregation) improves final convergence speed by more than 2.5 times compared approach. contrast, privacy-enhancing differential privacy) provides robust protection while improving same aspect 25%.
منابع مشابه
CLUST-SVD: Privacy preserving clustering in singular value decomposition
Large repositories of data contain sensitive information that must be protected against unauthorized access. The protection of the confidentiality of this information has been a long-term goal for the database security research community and for the government statistical agencies. Recent advances in data mining and machine learning algorithms have increased the disclosure risks that one may en...
متن کاملA Privacy-Preserving Classification Method Based on Singular Value Decomposition
With the development of data mining technologies, privacy protection has become a challenge for data mining applications in many fields. To solve this problem, many privacy-preserving data mining methods have been proposed. One important type of such methods is based on Singular Value Decomposition (SVD). The SVD-based method provides perturbed data instead of original data, and users extract o...
متن کاملA Symmetry Preserving Singular Value Decomposition a Symmetry Preserving Singular Value Decomposition
A Symmetry Preserving Singular Value Decomposition
متن کاملA Symmetry Preserving Singular Value Decomposition
A reduced order representation of a large data set is often realized through a principal component analysis based upon a singular value decomposition (SVD) of the data. The left singular vectors of a truncated SVD provide the reduced basis. In several applications such as facial analysis and protein dynamics, structural symmetry is inherent in the data. Typically, reflective or rotational symme...
متن کاملپیشنهاد روش جدیدی برای محاسبه polynomial singular value decomposition ) psvd )
در این پایان نامه به معرفی روشهای مختلف محاسبه psvd می پردازیم. بخشی از این روشها به بررسی روشهای مختلف محاسبه psvd در مقالات مطالعه شده می پردازد که می توان به محاسبهpsvd با استفاده از الگوریتمهای pqrd و pevd و sbr2 و محاسبه psvd براساس تکنیک kogbetliantz و روش پارامتریک برای محاسبه psvd اشاره نمود. بخش بعدی نیز به بررسی روشهای مستقیم پیشنهادی محاسبه psvd برای ماتریسهای 2×2و2× n و n×2 و 3× n و...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied sciences
سال: 2023
ISSN: ['2076-3417']
DOI: https://doi.org/10.3390/app13137373